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‘ : . ABSTRACT

=

direction can undergo extensive matrix cracking normal to the fibérs, while the

A fiber-reinforced ceramic subject to tensile stress in the fiber

i fibers remain intact. In this paper, the critical conditions for the onset of
widespread matrix cracking are studied analytically on the basis of fracture-
mechanics theory. Two distinct situations concerning the fiber-matrix

interface are contemplated: (1) unbonded fibers initially held in the matrix

by thermal or other strain mismatches, but susceptible to frictional slip,

and (ii) fibers that initially are weakly bonded to the matrix, but may be

I debonded by the stresses near the tip of an advancing matrix crack. The

- results generalize those of the Aveston-Cooper-Kelley theory for case (1).
Optimal thermal strain mismatches for maximum cracking strength are studied,

i and theoretical results are compared with experimental data for' a/;ic fiber,

Al

lithiun-nlumina-silicate glass nattix composite.
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‘”a critical debonding energy-release rate '
y- N critical mode-I matrix energy-release rate :-
K critical mode-I matrix stress-intensity factor (-szﬁm/(l-v:)l) E‘:
!,d fiber debond length . .
!'s fiber slip length ,;
q fiber-matrix interface pressure “
M coefficient of friction
Ve Vo fiber, matrix Poisson ratios E\
T interface slipping shear stress ’ ‘

]
1

: INTRODUCTION
Fiber-reinforced ceramic materials have promising potential for high-

. temperature applications (Prewo and Brennan, 1980). Under tensile loading of E
! the composite in the fiber direction, the brittle matrix can undergo extensive _:
cracking normal to the fibers, but the associated matrix cracking stress may be :z:.l
substantially greater than the catastrophic fracture stress of the unreinforced :

! ceramic. Furthermore, with the fibers intact, the composite material can ::;
continue to sustain additional load up to the fiber-bundle fracture stress. \['.:'E\
:. This behavior is illustrated by the schematic stress-strain curve shown in !‘;::
i Fig. 1. The slope of the initial straight portion of the curve is closely :Z:-._:
approximated by the rule of mixtures based on matrix and fiber moduli. Extensive ' ;.-:
matriy cracking, often involving a small stress drop, occurs at A , and the . :
matrix becomes permeated by many, more-or-less equally-spaced cracks that traverse .
the full cross-section of the specimen. Under continued loading, the fibers :
. alone provide most of the subsequent stiffness. The ultimate strength would ‘e':'
E 1deally be associated with fracture of uniformly strong fibers, but in practice s

is degraded somewhat as fibers fracture sequentially rather than simultaneously
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before the peak stress at B is reached. &*
In this paper, critical conditions for the onset of widespread matrix ::

s

cracking are studied theoretically on the basis of fracture-mechanics theory. ﬁr

Two distinct situations concerning the fiber-matrix interfaces are considered:

(1) unbonded fibers held in the matrix by initial pressures due to thermal or
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other strain mismatches, but susceptible to frictional.slip, and (ii) fibers

under initial radial tension that are weakly bonded to the matrix, but may be

2 4

debonded by the high stresses near the tip of an advancing matrix crack.

The study of case (i), which generalizes the well-known Aveston-Cooper-Kelly
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(ACK) theory, (Aveston et al., 1971 ; Aveston and Kelly, 1973; Kelly, 1976; .
Aveston and Kelly, 1980; Hannant et al., 1983) is based on the analysis of N
steady-state crack growth in the matrix. The concept adopted (slightly different A
from that of ACK) is that a "first" planar crack will propagate across the
composite under an applied stress that becomes constant during the propagation g%»
as soon as the crack engulfs more than a few fibers. With dynamic effects %ﬁ
neglected, the stress associated.with this steady-state cracking is equivalent b
to the "first cracking" stress of ACK. (The initiation of growth of the most gi
critical flaw in the matrix cbuld require a somewhat higher stress than that §:
associated with steady-state growth -- hence the slight dip in the stress-strain ?7
curve of Fig. 1.) Figure 2 illustrates the matrix crack as it proceeds across i;“
the composite. With enough frictional resistance, no slip will occur at Eﬁ
the interfaces, as shown in Fig. 2(a). When slip does occur (Fig. 2(b)), the o
slip length along the fibers on either side of the crack can be expected to Eﬁ
approach an asymptotic value on the downstream side of the crack front. :i
The presumption that Coulomb friction provides the resistance to fiber 2
slip implies that positive fiber-matrix pressures are imposed by strain ii
A
=
r‘z.‘
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mismatches that occur during the fabrication process. It does not however
follow that increasing such mismatches would necessarily raise the matrix cracking
stress, despite the larger frictional resistance thereby provided. The same
strcin mismatches also generally lead to initial axial tensile stresses which act
to reduce the cracking strength. Accordingly, optimal strain mismatches can be
expected to exist, and these will be estimated.

In the case of bonded fibers, the matrix cracking strength will depend on
the debonding toughness of the interface. In the presence of sufficiently high
debonding toughness, the first matrix crack will propagate in a manner
indistinguishable from that of the no-~slip frictional case (Fig. 2(a)). If
debonding does occur, and the interface pressure is negative (i.e., tensile
residual stresses exist between fiber and matrix) the debonded regions will open
up, and the crack will propagate as shown in Fig. 2(c). The steady-state
cracking calculation will be made for this case on the basis of an elementary

analysis of the debonding process near the advancing crack front.

ENERGY RELATIONS
A fairly general relation will be derived for the loss in potential energy
of a prestressed elastic body, within which, under constant additional load,
cracks develop and open up, and also sliding occurs along internal interfaces.
These relations will be used subsequently in the steady-state cracking
calculations. Figure 3 shows three states of the body. In state (O),'the body

is free of external load, but contains an initial tensor stress distribution

00 ‘1n its volume V . With the external vector tractions T applied to the é;g
external boundary ST in state (1), the stress becomes O » and additional Efz
displacements Y compatible with additional strains el are produced. The ;ié
body may now contain open cracks, as well as internal surfaces in which sliding ;%EE

NN
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has occurred. In state (2), with no change in T , more open cracking has
occurred, and additional frictional sliding has taken place along the interface
SF . The final sfresses are now 02 , and the displacements and strains, still
measured from the ground state (0), are u, and €, - We want to calculate
the potential energy loss (nl- 2) associated with the transition from the
energy W, in state (1) to T, 4in state (2). The elastic constitutive

relations may be written

€= n(o-oo) (1)

for the strain changes produced by 0 , where M is a linear operator. Then

1 [

T "3 ' Ty * u(oo)dv (2)
v
7. =1 [o : Mo )dv-j'r'u av (3)
1 2 )17 1
v Sy
1 {. . :
LA _°2 : n(oz)dv - I T uzdv (4)

In each case, the volume integral represents the elastic energy stored in the

body. Since o, H(oz) =0,: H(ol) , the energy loss may be written as

- l . - - * -

H-T, =3 I(ol-l-oz) : M(t‘:1 oz)dv I T (ul uz)ds (5)
v 57

We now assume that in state (2), the shear tractions on sp act in a direction

opposite to that of the relative sliding, and have constant magnitude T_ .

8
Then, by the principle of virtual work,
]T*(ul-uz)ds = ]Oz : H(Ul-oz)dv -1, ] |av]as (6)
St v S¢
e e e e T T T T e Ve T T e T
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where IAvl is the magnitude of the relative slip on SF that has occurred
during the transition from state (1) to state (2). Hence
-, --% I(cl-oz): M(0,-0,)dV + T_ I |av]ds €))
\' Sg
If we assume further that slip on SF has been unvarying and monotonic in
direction during the transition to state (2), and that the sliding resistance
has always been equal to Ty s the frictional energy EF dissipated (as heat)
1s precisely the last integral in (7). Hence
T - -lj(o-o):(e-e)dv+g (8)
1 2 2 172 172 F
v
under the stipulated assumptions. This result is clearly not valid under
conditions of variable~direction slip, or history-dependent frictional
resistance, during the transition from state (1) to state (2). Itidoes remain

correct for pointwise variations in Tg *

STEADY-STATE CRACKING RELATIONS

To apply the energy relations just developed, we contemplate a long matrix
crack of length s 1in a very wide specimen of width W and unit thickness, as
shown in Fig. 4. The crack extends through the thickness of the specimen, with
a straight front CC, but all of the fibers are intact. With no change in the
average applied stress O , the crack is presumed to advance an amount As to
C'C' . Now identify the initial uncracked and unloaded but possibly prestressed
state of the specimen with state (0), and let the states before and after the
crack advance As correspond to states (1) and (2). The assumption of steady-
state cracking means that the stresses at the crack front, averaged through the

thickness, remain unchanged during the crack growth, and also that the upstream and
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downstream stress states far ahead of and behind the crack front do not
change. Consequently, i1f we define PU and PD as the upstream and downstream

potential energies per unit cross sectional area of the composite, it follows

that
n-m, = (PU-PD)AB 9

Hence, the potential energy release rate (per unit crack extension, per unit

thickness) is

L
1 aEF
Pu- PD T ] I (OU-DD) : (EU—ED)dAdz + il (10)
i A

where UU » EU and UD ’ eD are the upstream and downstream stress and strain

distributions, and Ab is a representative cross-gectional area of the composite.

of
Here TEF is the frictional energy dissipation rate (per unit thickness)

associated with fiber-matrix slip.
In the case of unbonded, frictionally constrained, slipping fibers, the

energy-release rate Pu-P must be balanced by the sum of this frictional

D
energy dissipation rate and the critical matrix crack-extension energy-release

rate cdqm per unit thickness of the composgite. ﬁence the relation

1 . _ -
?A: I I (UU-OD) : (EU ED)dAdz cmbm (11)
=L Ac

governs matrix cracking, for both the slip and no-slip cases. If slip does
occur, the validity of this result requires that there be monotonically
increasing slip along each fiber.

In the case of initially bonded, debonding fibers, the frictional term in

(10) 1is sbsent, but now a debonding energy release absorbs part of PU--PD .
U ad
A
—
'.-.':1
.. ‘_;-. :.;L:' ;.:,::.t'.-.: ''''''' :,'-:.'-:.'-:_-.:.-_",-. :::: :_-.-’._.:_.-:.:'_..-'.._-:...;.::._-:.. S N N A SRR T e e e 1
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For a unit crack advance, the increment in debonded surface area per fiber is

2na2d on each side of the crack, and the number per unit area of newly debonded
fibers 1is cf/(ﬂaz) » 80 that the debonding energy release rate is 4cf(£d/a)9 .

Hence
L
T I I (OU-UD): (ey-€,)dAdz = cm’; + kcf(ld/a)ﬁh (12)

€L A
[

In order to implement (11) and (12) for the calculation of the cracking

stress, we now have to estimate 0O, and UD , and for the debonding situation

U

we also must estimate the debonding length Ed .

FIBER-MATRIX STRESS ANALYSIS
Upstream Stresses
Far ahead of the crack tip,.the axial stresses in the fibers and the matrix
in the loaded composite are those of the uncracked material. The upstream
stresses are therefore well approximated by

U
O¢ (Ef/E)O +0

I
£

(13)
I

i}
o, "= (Em/E)o +a

where O 1s the average applied stress, Og and Ui are the initial axial

stresses in the unloaded composite, and Ef , Em are the fiber and matrix
Young's moduli. This approximation neglects the effects of transverse stresses
on axial strains , and is consistent with the rule-of-mixtures expression

E = cfEf + cmEm (14)

for the effective axial modulus of the composite., The initial and total stresses

satisfy

c 0, +¢ oI =0 (15)
mm




e

and

cgOg + ¢ 0 =0 (16)
respectively.

Downstream Stresses
Behind the crack tip, the average fiber and matrix axial stresses at the
crack face are of = o/cf
an
om =0

and for L>>a the stresses at z=1L are given by Eqs. (13). Approximate
shear-lag analyses will provide the far-dowmstream stress distributions in
each of the cases shown in Fig. 2.
No-slip case

Far from the crack tip, an isolated composite-cylinder shear-lag model,
similar to that adopted by Aveston and Kelly (1973) will be used. Each fiber is

presumed to be embedded in a matrix cylinder of outer radius R chosen as

Re= a//; (18)

to provide the correct volume concentration of fibers (Fig. 5(a)). The model is

further simplified (Fig. 5(b)) by concentrating all of the axial-stress-carrying
area of the matrix at an effective radius R between a and R , and assuming

that the region in a<r<R supports only shear stresses ‘rrz(r,z) « The

equilibrium and constitutive relations in this region simplify to

21 R
-t "0 a9
ow
T2 " G 3r 20

vhere w(r,z) is the axial displacement, measured from the uncracked state.

It follows that
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aTi(z)
Trz(r)z) = (21)
where Ti(z) is the interface shear stress, given by
G (w -w_)
Ti(z) --n m f (22)

a log(R/a)
in terms of the fiber and matrix displacements wf-w(a,z) and wmlw(l-!,z) .
Fiber equilibrium implies

aof 2
=t Q-0 @

and since the composite cylinder is isolated, Eq. (16) remains valid.

Eliminating v and Ve from

Ef dz
(24)
1
om- om i} dwm
E dz

and Eqs. (16), (22), (23), and applying the boundary conditions (17) and (13)
at z=0 and |z|=® respectively leads to the following results for the

downstream stresses:

i A
- 02 - (cmh:f)o:c‘!'plzl/a

oP - 02 - _U:e-olzlla ? (25)

-plz|/a

D__z p U
i |z| 2 (cm/cf)ome y

where

2% E 1/2
p= 2 (26)
¢ EE log(R/a)

If the fibers are held in the matrix by friction, this result is valid only if
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the no~slip condition

D, .+
13211(0)

or
1 2cfE
¢+ (E/Em)om < o B 'l.'s (27)
m m
is met.

Slipping fibers
When the no-slip condition (27) 1is violated, frictional sliding between fiber

and matrix, with T =Ty » occurs in a length 28 on either side of the crack.

Then Eqs. (16), (17) and (23) imply that

¢ = ofe, - ZTslzlla

o "o

g = 2(cf/cm)'ts|z|/a | (28)

for 0s|z|s 9.8 , far downstream from the crack tip. Re-solving Egs. (16),

(21)-(23), now with the boundary conditions Tt =T  at |z| = £, and, again,
(13) at |z|== , leads to
Do v 2t e-p(lzl-llﬁ)la \
f f P
2t -p(lzl-2 )/a
D v___s 8 >
o -o, " 5 (cf/cm)e (29)
I (lz|-2 /e
i |zl 8 /
for |[z]|2 2’ . Then imposition of the requirement that the axial stresses be \
continuous at |z| = Q s provides the equation 1
P
c E -y
o+ (E/E )01] [—"'—9] i)
m m cfE 1 30 ey
R.s/a - 77 -5 (30) s
[ o
RN
e e e e e T T e T L e e e e e e e i
Y '-'_$;.' .-.‘fh_-‘ N -;‘_-‘ N '-."ﬂ;'-. '-"'». - '-.A'-;'-"’-‘A'~.-'-‘ '-A‘-..'-‘-'- "-‘."_.":.}-.'-.-".."..\' '5._':-':'3‘_‘-.. '-.:':::...\"‘.:1-.:3:‘-':1';3:'.‘:'."'.'..’:
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APPENDIX A
Estimate of Effective Radius R in Shear-Lag Model

Evaluation of the shearing energy contribution in Eq. (32) gives

log R/a j Tidz (A1)

2cf(1+v )

E
m

This relates to the simplified model of Fig. 5(b), but now let us return to the
configuration of Fig. 5(a), and contemplate a continuous shear lag model in which
the matrix stress om is distributed across the outer cylinder. Longitudinal

equilibiium implies

Bom B(rTrz)
ro; vt =0 (A2)

together with the boundary conditions

Trz(a) = Ti

(A3)
Trz(R) =0
The assumed distribution
T,(2) ¢ 2 2
i fl] R -x
Tep(T2) = =3 &?J T (a4)
m
satisfies these boundary conditions. Substitution into (A2) gives
3om
el 2(cf/cm)(T1/a) (AS)

uniform in r , and this is consistent with the equilibrium requirements (23) and
(16). Accordingly, an appropriate solution for the z-distributions of the stresses
based on the principle of minimum complementary energy (which requires the use of
an equilibrium approximation) based on the assumption (A4) is legitimate. Except

for the definition of the characteristic parameter p , this solution will be

identical to the one derived on the basis of the simplified model. The
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propagation of matrix cracks into the fibers. The post-matrix-cracking strength

exhibited in Fig. 1 and the accompanying pseudo-ductility, would then be lost.
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Measured values of acr gave

(ccr)exp = 290 + 20 MPa

These results suggest the presence of a small initial axial compression.
This is consistent with observations reported by Marshall and Evans (1985) of
matrix crack closure, upon unloading, at small tensile loads. But initial axial
compression in the matrix would ordinarily be accompanied by tension normal to
the fiber-matrix interface. Accordingly, interfacial roughness rather than
Coulomb friction may have been the primary source of the interface shear

resistance in the Marshall-Evans experiments.

CONCLUDING REMARKS
The two idealized assumptions pursued herein concerning the fiber-matrix
interface -~ frictionally constrained, sliding fibers and initially bonded,
debonding fibers —— are not, of course, exhaustive. Combinations of these
possibilities could coexist, and interface roughness might play a more important
role than interface pressure in providing slipping resistance. Two interesting,

if tentative, conclusions can nevertheless be reached:

1. 1If Coulomb friction is operative, optimal strain mismatches exist

]

'

that maximize the matrix cracking strength.

3

T o) )

B 0 N R A

2. In the case of initially bonded fibers, a fairly small interface

debonding toughness cﬁd-vbm/5) suffices to inhibit debonding

»
) 3
W

during the matrix cracking process.

A final csutionary note: the inhibition of either debonding or slipping

¢« v v 9, e - -
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may be quite undesirable despite the fact that the matrix cracking strength is

thereby increased. Full msintenance of fiber-matrix continuity facilitates
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and this condition will generally be easily met. This means that as a function
of decreasing (8hlﬁm) » the matrix cracking strength will drop abruptly from
its no-debond value when (bdlam) falls below its debond threshold value. This
is illustrated in Fig. 12 for E/E =3 , v =1/4 , and O.=0 . It is
interesting to note that once it drops from its no-debond value, ocr remains
fairly insensitive to debond toughness until extremely low values of 5& are

reached.

EXPERIMENTS
In some recent experiments, Marshall and Evans (1985) studied first-cracking
in a ceramic system consisting of silicon-carbide fibers in a lithium-alumino-

silicate glass matrix. The nominal values of pertinent parameters were

cf = 5
E =85CPa }E=~142.5CPa
Ef = 200 GPa
vm = ,25

-6
a =8,0X10 m
K = 2.0 Mpa-m/?
m

2 2

4, - 44 N/m (-Km(l-vm)/Em)

Push-through and indentation tests of individual fibers in composite samples gave
measured values of Tsﬂlz.o MPa , suggesting that the frictional-slip model should

be applicable.

On the basis of the nominal data, Eqs. (38)-(40) give
Oy = 1625 MPa (B=.88)

01 = 265 MPa
This puts olloo- .16 well within the large-slip range (Fig. 7), and so the

theoretical prediction for the cracking stress is
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axis and each lower branch must be overcome. Since the debonded leﬁgths along
the lower branches are quite small, it seems reasonable to presume the presence
of initial material flaws and imperfections that are equivalent to initially
debonded regions of similarly small size. Then crack-tip stresses would push
these effectively debonded lengths to the upper branches of the curves.
Threshold Bond Toughness
The function Q(X) in Fig. 9 attains a maximum value Q*- 2.061 at
X*- .9204. Since debonding can not occur for Q> Q* , this critical value of
Q can be used in Eq. (62b) to obtain, as a function of Ce s threshold values
& d/ﬁm)* of the ratio of debonding to fracture toughness that would prevent
debonding. The results, shown in Fig. 11, indicate that a debonding toughness
that is quite small in comparison to matrix fracture toughness suffices to
suppress crack-tip debonding over the practical range of fiber fractionm.
Critical Cracking Stress

With the use of Eq. (36) for p , Eq. (55) for 0. becomes

Tr
SRR
o c c (a
L, | __ __® L (64)
o E © 2 1/2,.4
L +%-[(—1+3E_)E ] [Td]
m m’ " f

wvhere B (Fig. 6) is given by Eq. (39) as a function of Ce » and R.d/a is
defined as a function of ce and Jdlﬂm by Eqs. (62) and the upper branch of

*
the curve in Fig. 10. For (¥ dlilm) > (& d/ém) , no debonding occurs, and the

1
g g
old no-slip result —09-!+§E— 32- 1 applies. When debonding does occur, we can
0 m 0 .

expect the result (64) to provide a lower cracking strength than that for the

*
no-debond case. For (¥ dlbm) < (]dlam) » the right-hand side of (64) is certainly

less than unity if

N AR [ E ]
d " m 4eg Ef(1+vm)

...........
-----------------------




=20~

The solution of (59), with the boundary conditfons U(% 2 d) =0 , permits the
calculation of the energy expression
1 *a
Vs i-[ Or(z)U(z)dz (60)
0

which represents the loss in potential energy of half of the loaded matrix jacket
due to debonding., Then the energy-release-rate relation
v
21Ta£Ii - (61)
d
provides the condition governing ¢ a° The result (Appendix C) is the pair of

parametric equations
1/2

_ 1-v
L,/a = (1+ /E;)[acf"‘] X (62a)

(1+‘/<:—)3 1/2
e [ 2 )] Q(x)

418, - 1281c_ [c (1-V_ (62b)
relating l’-ﬂ/a to "d/‘bm , where
fx cosh 8 ds 2
0 Vs
QUX) = ——ost X (63)

is plotted in Fig. 9.
Note that Eqs. (62) imply that 2 d/a is not a single-valued function of
Jd/.bm . But from the energy-based derivation that led to this result, it follows

that combinations of R.d/a and Jd/tm associated with the region to the left

of the curve in Fig. 9 are unstable, while those to the right are stable. The
implications of this are better seen in Fig. 10, which show, as examples,
explicit plots of !.d/a vs. bd/‘ym for several values of ce - The upper

part of each curve represents stable debonded lengths, but for debonding to

occur at all an energy barrier associated with the region between the horizontal
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Debond Length Analysis
We suppose that stress changes in the vicinity of the crack tip debond
the fiber-matrix interface just ahead of the advancing crack for a distance ld
on each side of the plane of the crack. To estimate ld we will again adopt
a composite cylinder model in which we pretend fhat axisymmetric debonding is
produced by an axisymmetric distribution of load applied to the matrix cylinder
that jackets the fiber (Fig. 8). Conservatively, we take the magnitude of this

loading as the stress

K
O (z) = (56)
4W/miz|
and apply it at the mean radius l!.lll of the matrix jacket. Here

1/2 is the critical elastic stress-intensity factor of the

K_= [E & /(1-v))]
matrix, and (56) is just the asymptotic distribution of horizontal tension just
above the crack tip. The debond length ld will be calculated on the basis of
an energy balance involving the debonding toughness '9h » and the energy

changes in the matrix during debonding. The deformation of the matrix will be
analyzed on the basis of thick-cylinder theory, in which only transverse shear

stresses and circumferential tension resist radial displacement. In terms of

the cylinder thickness

t=R-am= a(c}llz-l) (57)
and the mean radius
1 a, -1/2
Rm = 'i(R"l'a) = -i(cf +1) (58)

the differential equation governing the radial displacement U(z) at r=R
m

is taken as

dZU Emt
-Gmt 2 + - 3 U= or(z) (59)

...............
.....................................

--------------------------------------------------




linear initial part of the curve in Fig. 7, justifying the use of Eq. (40) for

ocr

There is an interesting connection between QOPT

for self-cracking of the matrix in the absence of external stress. Under the

and the mismatch Qsc

assumption of large slip, self-cracking occurs when the right-hand side of (47)

vanishes, which implies that

QSC = 3/3 QOPT (53)

MATRIX CRACKING: (£1i) INITIALLY BONDED, DEBONDING FIBERS
Cracking Condition
We assume that there is initial transverse interface tension in the composite,
8o that downstream from the crack tip, regions of the fiber-matrix interface that

have been debonded stay open.

The steady-state cracking condition (12) is then

oo ® R 2

-1-] f (o ) + (o -0 ) dz+-—1——] ] a—Ti} (27r)drdz = ¢ & + 4c_(R,./a)¥
2 m m m ZWch r r z cm m g1 7d'8%
- m ~® a

(54)
where we will use (13), (31) for |z|'<£d , and (25), with |z| replaced by
(z]- zd) , for |z|> Ly + (As before, we ignore transverse-stress contributions

to strain energy.) This leads to the result

1/2
be_ 2. ¥
1+—£ 44 I
er . ‘n & Y, E EE
1455 .

where p 1s given by (36), but now we require an estimate for the debond

length ld .
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are obtained.
If we anticipate that the optimum value of { will lead to large-slip
matrix cracking, it is appropriate to use Eq. (40) for Uct » With Tg ™ Hq

in Eq. (41). Then

m
“E “7)
m m

o [6uc§E l’:l”"’ ]1/3 ol

with q/Em and Oi/Em given by (45). For >0 , Our will attain a maximum

value at ﬂ-ﬂo' when the condition

PT
2 1/3 I
6 E Y 1/3
[_Pii_m [ﬂ.] / - 3[?2] (48)
cmEmga Em Em
is met. Hence
MLE(A-v )] ub 1/2
y) -t 3E m _.i._m__ 49)
OPT £ Azc E a
fm

and

Ay (E c
2) (B£) ¢
e/ Byax = 2[7\"] {"E’] [l-v ]nop'r

1 o
(50)
’ cf"‘h 1/2
3 AzEna

At this optimum design, the associated slip length, based on the first term of

Eq. (30), is given by

3)\,E

2°f
2. /2= oE (51)

Corroboration of the validity of the large-slip assumption follows from the
observation that

(ocr)MAx

o "B 6E (52

+ (/B ol l{cmu]]'/ 2[£(1+vm)]1/ 4
B[, -

0

This value will generally be small enough to fall in the nearly

OPT °

'A
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is valid for the sliding frictional resistance Tg » it follows that increasing
the strain mismatch would raise 61 as well as c; . Then Eq. (40) implies the
existence of an optimal strain that maximizes the externally applied cracking
stress acr . (Bowever, the assumption of Coulomb friction is not necessarily
valid. Conceivably, Tg may be due primarily to interface roughness, in which
case the optimization study that follows is inapplicable.)

Suppose that non-elastic strains e and e, occur isotropically in matrix
and fiber during fabrication, and call

Q= (ef-em)

the strain mismatch. (If, for example, the mismatch is due only to thermal
straing, (= (af-cm)AT , where AT 1is the temperature change, and @ »a; are
the linear thermal expansions over the range AT . Note that § 1is positive
if the matrix contracts more than the fiber during fabrication.)

For simplicity, we assume that both the fibers and the matrix are isotropic.
A straightforward analysis of the composite cylinder model of Fig. 5(a) then

gives

(45)

where Xl R Xz are functions of Ce » zf/zm » vf , and vm shown explicitly
in Appendix B. For cf*-l , Al,lz-'l , and both Al and AZ will not vary
too much from unity for reasonable values of Ce and Ef/En . If we assume

v-%-v,memufmm

1{1-2v E
A =1- 5[1-\» ][l'zf]

1 1
=1-3(1-E/E) = F(1+E/E

4

(46)
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-]5=

1
(] 0°||lc Ep
‘ Y= Lr,  pj|mm _ (42)
[ E Em} [ZCETJ

the results can be manipulated into the form

1 3
Ocr+ (E/Em)om i} [! [-C:l]
00 3 00
where (43)

. fl] } 27 ]1/6
% Weaw-a
In the range Y>1 specified by the slip condition (27), Eqs. (43) are parametric
relations giving

I
(acr+ E/Em)om
(o]

0

as the function of the independent variable (01/00) plotted in Fig. 7. For

/3. 1.442 , and so for (clloo) > 31/ 3 , the no-slip result

1
Y=1, (°1’°o)'3
o__+ (E/E )or
cY m m

%

=1

I
applies. For Y=+« , (01/00)-'0 ,» and O+ (E/Em)om approaches the large-slip

ACK value © This large-slip result is a good approximation over the

1
substantial initial portion of the curve in Fig. 7 that is nearly linear. 1In
the slipping range, the slip length !'a may be found from Eq. (30).
Optimal Strain Mismatch

Mismatches between the non-elastic fiber and matrix strains that occur
during fabrication (e.g., due to cooling, plasticity, creep, or phase trans-
formation) will produce initial matrix stresses O:i as well as fiber-matrix
interface pressure q , and a positive q will generally go along with positive
ol . If a Coulomb friction law of the form

1, = ug (44)

. a"e .
..... L2 N W)
RPN YR TIRES P S R IS -
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where 2 1/4
% 6c fEf l‘# 1/2
L m
E " B, |=E (38)
cmE(l-i-\’m) m

When the estimate (34) is used for log R/a , we have

zcz 1/4
B= [—6 log c.- 3°m(3-cf)] (39)

Then B-+1 for c£+1 , and, as shown in Fig. 6, B does not vary much from
unity over a large range of fiber concentration g -

The ACK results for slipping fibers (Aveston et al., 1972) can be recovered
from Eq. (32) by substituting Eqs. (28) for olf) and o: in |z|< %, dropping
the shear contribution to the energy; neglecting all energy contributions in
|z] > % ; and dropping the (1/p) term from the formula (30) for & /a . (It
can be verified that these truncations are all asymptotically valid for ls/a-' ©,)

—

The result is

1
g (o] g
cr m 1l
T Y'E"T (40)
m
where / /
2 1/3 1/3
E_L - |—6cfzf‘rs l'l{n (41)
E l. cmEmE I-aEm

is equivalent to the ACK expression for the critical, large-slip cracking strain.
(Aveston et al. do not actually present a counterpart to Eq. (40); they derive
the cracking criterion Gcr/E-OllE for 0:-0 , and separately, also deduce
that 0:/5:-01/8 is the condition for self-cracking in the absence of external
loading.)

To bridge between the no-slip and large--lip ACK results, we can substitute
the full expressions (29) for |z|2 %, , together with (28) for |:¢|SILs .

into (32). With Y defined by




oo ® R Joh

c c ' .

1({Cf,v D2 “w v D2 1 D 2 "

2 ] [r:f (og of) +3 (oIll °m) ]dz +ch_j [ (rrz) 2mrdrdz = c & (32) e

-0D n m -~ a ..::

wherein, by Eq. (21), Tl:z-g‘r? . (Here we neglect contributions to strain energy :‘_:;

u associated with downstream changes in transverse stress.) For the no-slip case :
P

P substitution of Eqs. (25) into (32) leads to the formula t;.‘.
\ e
. 1 1/2 o
Oex + ‘n - fcfEfl{np (33) =

E E | aEE e
m m oy

for the cracking stress ocr . Except for the initial-stress term O:J/Em s
this is essentially the result originally given by Aveston and Kelly (1973) for
no-slip matrix cracking. |

Aveston and Kelly do not specify R in the definition (26) for p , beyond

X7

the unelaborated statement that R 1s equal to the radius at which the matrix o

displacement equals its average value. On a different basis, the explicit

estimate
_ 2 log ¢, +c _(3-c,)
log R/a = - £ 5 m £ 34)
: 4c n

is derived in Appendix A. (This gives (R-a)/(R-a)=+1/3 for cf*l ;s for E
cf-'O , (R~a)/ (R-a)*e_aM- .47 ) 1If we introduce the utility constant _'
. 1/4 ,
B~ |—2— (35) '
6 log R/a g

into the definition of p , we get

2 1/2 ' -

B 6E ¢

o= _[___] (36) -
c|l| Ef(lwm)

and we can rewrite (33) in the convenient form

I
o o [}
er m 0 -
T+ E R 37 :

.........
.................
.....................
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for the slip length. For 2.8- 0 this is consistent with the no-slip requirement
(27), and Eqs. (28), (29) are, of course, valid only for ls/aZ(J. For 28
larger than a few fiber radii, the contribution to ks/a of the term (1/p) 1in
(30) will be small.

Initially bonded, debonding fibers

Now we suppose that debonding along a length 2. on either side of the crack

d
is produced near the crack tip by interface fracture, and that the debonded
- regions remain open downstream of the crack tip. The axial and shear stresses in

0<|z| S%, are simply

D
of = c!/cf

D
Gm =0 (31)

T, =0

D
i
and for |z|22% d shear-lag analysis reproduces the results (25) from the no-slip
case, with |z]| in the exponents simply replaced by (Jz]-2 d) . We presume
that the interface shear stresses will not produce any additional debonding that
increases ld beyond its crack-tip value.

Note that in contrast to the case of frictionally slipping fibers, the shear-

lag solution for debonded fibers involves a discontinuity in T, at Izl - R,d .

i

MATRIX CRACKING: (i) UNBONDED, FRICTIONALLY CONSTRAINED FIBERS
Critical Cracking Stress
Using the stresses of the shear-lag model in the steady-state cracking

equation (11) gives (for L+ )

'.‘ - -."u
el

.
..




..................................................................

correspondence between the two solutions is easily found by replacing R by

R 1in the shear energy contribution in Eq. (32) and using (A4) for 122 .
This gives
2009 @2 & 3m? (e [
_E,,—[E;] [[3] log 3“'?[3] '?[i] ] J F1e (46

-00

With (R/a)z-'(llcf) » comparison of (Al) and (A6) then provides the estimate
(34) for R/a .
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APPENDIX B

Initial Stresses

e

By the classical Lamé solution for the unloaded composite cylinder of
Fig. 5(a), the initial circumferential stresses O

£ and °em in the fiber -
and matrix at their interface are
Opg = 4

; .'!- . ‘[

(1)
Ogn = 9(1+c)/c
where q is the interface pressure.

The conditions of interface strain
continuity are

TS

1, I
£ %
m

£

- AL
KA

1.1
- vm(oem-q)] te = -Erlof- vf(aef ql + e

1 1
i:[oem-vm(om-q)l te =

LYY

(B2)
1 1
Ef["ef"’f(“f'q)] teg

Substitution of (Bl), elimination of oi via Eq. (15), and solution for O

LTY

and q gives the results (45) of the text, with Xl and Az defined by

Al =

1- (1-E/E) (- 12+ € (0,00 /2= (BIEQ [V + (omvple /51 (83) .
(1-v )4

[1- (1-E/E) /2] (149 + (Le ) (V=v) /2
A =

2 A
where

. . ‘_l “"‘: ' "'--"

(B4)

LN )
.

A=14+ v + (vm-vf)cfl!f/z

(B5)
and E 4s given by (14). Setting Vo ® V¢ gives Eqs. (46).

e et
e a
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ot
> APPENDIX C
4
op Debond-Length Analysis
;; Letting
o z = £,(2/X)
1/2 (c1)
- [ﬂ a-BT [, /e
-~: U B e | ———— —m—— ———
- 4 mE t [1-v] u
. m
. vhere
1/2
- (zd/R)[l v] (c2)
i% reduces the differential equation (59) to
o~ _ o 1p1-1/2
1 u +u= [z (c3)
and the boundary conditions become u(*X)=0 . The energy-release-rate
:;i condition (61) becomes
—
1/2 .
- -1/2(%u .
l32n][ac][1-v] I ¢ {5§Jd; (c4) .
: 0 N
¥ For ;>0 , the solution of Eq. (C3) is
; i ') * c ( t 1 l:::
sinh(Z-5')dg cosh T I sinh(X-2')dzy o
us= -J + (cs) N
cosh X 0 el
Vo T i
Y which gives ;:
- X L
e rare .
- %% - coshig I cosh r'dg (C6) :
v cosh™ X 0 3

Then (C4) provides the results (62), (63) of the text, wvhen c, is introduced

3
via Eqs. (57), (58).
For calculation purposes, the function Q(X) in Eq. (63) may be written in f:&

b
terms of Dawson's integral -
~
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g2 (02
D(2) = e ] e® ds (c7)
0

,

I T I
R
AR

Sgdy 4ot ety

v

which is tabulated and available in software. Thus

2
l'exb(xuz) +Lf-r- erf(Xl'/z)
Qx) = L cosh X

(c8)

2

vhere erf(Z)s=

zZ 2
[ e2ds . For X large, Q~1/X , and for X small, Q~4X .
0
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state (O) state (1) state (2)
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€0 =0 € =M(0;-0p) ezsm(o--
u°3o u 1~o U: 2 @

Fig. 3 Three successive states: (0) unloaded, prestressed, (1) loaded,

(2) new open crack surface SC , more sliding on surface SF .
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Fig. 4 Advancing matrix crack.
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Fig. 5 Shear-lag model (a) composite cylinder, (b) concentrated matrix area
at effective radius R , (c) axial and shear stresses.
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.6 —
S
(_h)' T
S
2f
no debonding
Jik
\- - e W .
——— debonding
o 1 J L l 1 I 1 | L M |
(o) .2 4 6 .8 1
Ct
" Fig. 11 Threshold bond toughness (v _=1/4) .
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Fig. 12 Matrix cracking strength versus debond toughness/matrix toughness iE
ratio; illustrative example zf/z'-s . v--IM ’ 0:'0 . :::;







